
© 2015 IBM Corporation

An introduction to MQ
publish/subscribe

Carl Farkas
IBM Europe zWebSphere consultant
farkas@fr.ibm.com

© 2015 IBM Corporation2

The team

• Carl Farkas
farkas@fr.ibm.com

• Luc-Michel Demey
lmd@demey-consulting.fr

(material based largely upon materials from David Ware, Morag Hughson
and others)

2

Objectives of this MQ z/OS Proof Of Technology

3

• This POT introduces the IBM MQ Pub/Sub feature. The objectives are to…
• Familiarise you with the basic functions
• Allow you to actually configure and test pub/sub, either on a Windows or a z/OS queue

manager
• Warning: a PoT does not replace MQ education. It is not expected that you’ll have enough

knowledge at the end of this PoT, for example, to fully master these new features. IBM provides
via its partners formal education classes, and IBM also offers service engagements which can
provide more in-depth information on MQ and its features.

Prerequisites
• Be able to read some English
• These exercises do assume that you are relatively familiar with basic

MQ concepts and administration.
• Above and beyond MQ, it is assumed that you have some experience

with MQ in the particular operating system environment where your
lab queue manager is running for the exercises, either Windows or
z/OS. For z/OS, for example, it is assumed that you have a bit of
experience executing SDSF commands, etc.

“I hear and I forget. I see and I remember. I do
and I understand.” – Confucius

3

WebSphere Technical University
• THE major IBM conference in Europe for WebSphere te chnology

in 2015
• Hundreds of sessions on our favorite WebSphere topic s: WAS, MQ, IIB

(Broker), etc.
• Dublin, 13-16 October 2015
• http://www-304.ibm.com/services/learning/ites.wss/zz/ en?pageType=page&c=G944977I79041O41

• Meet the developers and meet your peers throughout Europe
• A terrific investment in your skills

• Agenda provisoire dispo sur le web
• 52 sessions WAS + MQ

• 27 sessions « Cloud »

• 32 sessions Broker, Datapower, APIM…

• 10 sessions « Mobile »

• 24 sessions BPM, ODM, etc.

• 22 sessions « z » (CICS, WAS z/OS, MQ
z/OS, etc.) 4

© 2015 IBM Corporation

Bois-Colombes Tec

5

6

Agenda

• What is publish/subscribe?
• Publish/Subscribe in IBM MQ
• Topics
• Use cases
• Managing topics
• Subscriptions
• Publishing
• Application development
• Topologies

What is publish/subscribe?

Publish/Subscribe
• Publish/Subscribe (or pub/sub) is an asynchronous

messaging paradigm where senders (publishers) of
messages are not programmed to send their messages
to specific receivers (subscribers). Rather, published
messages are characterized into classes, without
knowledge of what (if any) subscribers there may be.

• Subscribers express interest in one or more classes, and
only receive messages that are of interest, without
knowledge of what (if any) publishers there are. This
decoupling of publishers and subscribers can allow for
greater scalability and a more dynamic network topology.

• Pub/sub is a sibling of the Message Queue paradigm,
and is typically one part of a larger Message-Oriented
Middleware solution. Most messaging systems support in
their API (e.g. JMS) both the pub/sub and Message
Queue models. 8

“Topics”

Terminology in the Pub/Sub world

9

• Topic
This can mean topic strings , topic objects and even topic nodes , not to mention
JMS topics !

• Publisher (or sometimes called “producer” or “sender”)
A publisher is an application that puts messages to a topic as opposed to a queue.

– A publisher can either open a topic object or a topic string.

• Publication
A publication is simply a message that is put to a topic rather than a queue

• Subscription
A subscription is an artefact that exists on a queue manager that describes where
copies of messages published for a particular topic string are delivered to

– A subscription identifies a queue for those messages

• Subscriber (or sometimes called “consumer” or “receive r”)
A subscriber is an application that consumes messages from a subscription.

- Note also that sometimes the “subscriber” and “consumer” are different entities!

point-to-point

Message consumer

Message consumer

Message consumer

Message producer

10

How does it compare to point-to-point?

Topic

point-to-point

Message consumer

Message consumer

Message consumer

Message producer

11

How does it compare to point-to-point?

publish/subscribe

Subscription

Subscription

Subscription

Message consumer

Message consumer

Message consumer

Message producer

12

But which subscriptions receive the messages?

Subscription

Subscription

Subscription

Subscription

Publisher

Publisher

Publisher

Subscription

Subscription

• Publishing and subscribing is based on ‘topics ’
• Green messages go to green subscribers
• Orange messages go to orange subscribers
• But nobody wants a blue message!

Publisher

Point to Point Examples

• Post Card
• Goes to just the person I send it to.

• eMail
• Might go to lots of people but I get to choose exactly who gets

it.
• Message Queuing

• If I put a message it will go to one consumer.

13

With Point to Point, the sender (MQPUTer) explicitl y defines
the receiver (MQGETer) at MQOPEN time

Publish / Subscribe Examples

• Magazine Publishing
• In the US – almost 10,000 titles published in US (only 2,000 are

considered ‘major publications’)
• Airline Departure Boards

• Boards might display (subscribe to)
– All departures
– Departures at this Terminal
– Departures by this Airline

• RSS News Feeds, Twitter, etc.
• Forums
• Facebook!

14

With Publish/Subscribe , the sender (MQPUTer) never explicitly defines the
receiver; he never even knows if there are any rece ivers!

Moving Toward Loose Coupling

• Monolithic
• Work is all on one computer!

• Client-Server
• Work is distributed
• Detailed knowledge of topology and connectivity needed
• All components must be available for the application to work.

• Message Queuing
• Work is distributed
• Cooperating components can be available at different times
• Work will queue at busy times or if a component is down
• Connected by Queue Names.

• Publish/Subscribe
• Cooperating components exchange data through an infrastructure

that identifies the “subject” of the data.

15

Publish/Subscribe in IBM MQ

17

IBM MQ’s publish/subscribe over the years

IBM MQ Publish/Subscribe SupportPac MA0C

IBM Integration Bus®

IBM MQ

Command message based publish/subscribe API

JMS publish/subscribe API

Native MQI publish/subscribe API

Publish/Subscribe brokers

IBM MQ Publish/Subscribe APIs

XMS publish/subscribe API

MQ V 8MQ V 7MQ V 6MQ V 5.1

Note: IBM also proposes a publish/subscribe broker wi th MQTT and MessageSight.
Conceptually this is the same as MQ publish/subscribe, although the API and many
of the details differ. This is not covered in this lec ture.

18

Publish/Subscribe – how does it work in MQ?

� Pub/Sub is a function that allows:
– Publishing applications to make information (eg. Me ssages) available to a list of « interested »
applications
– Subscribing application can receive information
– Fuller “decoupling” model of source (“Publisher”) a nd target (“Consumer”) applications

� Typical uses of the Pub/Sub model:
– Document distribution, alert notification, newsgro ups, and any application where the distribution
list tends to be dynamic

� As of v7, MQ “internalizes” and simplifies Pub/Sub

SYSTEM.BROKER.CONTROL.QUEUE

SYSTEM.BROKER.DEFAULT.STREAM

Appli

Subscriber

Appli

Publisher

SUBSCRIBEQ

Appli

Consumer

<psc>

<Command>RegSub</Command>

<Topic>Vins/Francais/#</Topic>

<QName>SUBSCRIBEQ</QName>

</psc>

1

43

<psc>

<Command>Publish</Command>

<Topic>Vins/Francais/Bordeaux</Topic>

</psc>

RED;MARGAUX;150EUR

2

MQOPEN Vins/Francais/Bordeaux

MQPUT RED;MARGAUX;150EUR

MQSUB Vins/Francais/Bordeaux

MQ Pub/Sub motor

Topics

21

It’s all about the topic tree

Price

Fruit

Apples Oranges

Vegetables

Potatoes

Topic string

Topic node

/Price/Fruit/Apples /Price/Fruit/Oranges /Price/Vegetables/Potatoes

/Price

/Price/Fruit /Price/Vegetables

•The tree has “leaves” (topics nodes) added implicitly or explicitly, either administratively or by subscriptions

23

Price

Fruit

Apples Oranges
Subscription

/Price/Fruit/Oranges

•Subscriptions are attached to matching nodes in the topic tree

•Publications identify the relevant topic node

Publisher
/Price/Fruit/Oranges

•A copy of the publication is delivered to the queue identified by each matching subscription

Subscription
/Price/Fruit/Apples

Subscription
/Price/Fruit/Oranges

Subscription

/Price/Fruit/ #

•Wildcarding subscriptions at the topic node level can receive messages from multiple topic strings

Matching publications to subscriptions

•Subscriptions are made up of (1) a topic and (2) a queue to receive the publications (plus other bits)

24

Designing your topic tree structure

• Make it extendable.

• Understand a rapidly changing set of topic strings.

• Avoid excessively wide or deep dynamic topic trees.
• Use structure where appropriate.
• Limit it to subscribable content.

is

my

first

topic

/This/is/my/first/topic /This/is/my/second/topic

second

topic

Topic1
Topic1

Topic2
Topic2

Topic3
Topic3Topic4

Topic4

Topic5
Topic5

Topic6
Topic6

Topic7
Topic7

Topic8
Topic8

Topic9
Topic9

Topic10
Topic10

Topic1
Topic1

Topic2
Topic2

Topic3
Topic3Topic4

Topic4

Topic5
Topic5

Topic6
Topic6

Topic7
Topic7

Topic8
Topic8

Topic9
Topic9

Topic10
Topic10

Topic1
Topic1

Topic2
Topic2

Topic3
Topic3Topic4

Topic4

Topic5
Topic5

Topic6
Topic6

Topic7
Topic7

Topic8
Topic8

Topic9
Topic9

Topic10
Topic10

Topic1 Topic2 Topic3 Topic4 Topic1000

Topic1 Topic2 Topic3 Topic3 Topic1000

AppA AppB AppC

This

29

VEGOBJ
TOPICSTR(‘/Price/Vegetables’)

FRUITOBJ
TOPICSTR(‘/Price/Fruit’)

Topic Objects

Price

Fruit

Apples Oranges

Vegetables

Potatoes

SYSTEM.BASE.TOPIC
TOPICSTR(‘’)

� You start with a base object defined for the ‘ ’ node … the rest are optional .

� They provide hook points in the topic tree to configure specific pub/sub behaviour for a branch.
� A dynamically created topic node inherits its attributes from administered topic objects

associated with topic nodes above it in the topic tree.

� Topic objects are a point of administration associated with a node in the topic tree.

TOPIC administration syntax example

31

ALTER TOPIC(topic_name)
[CLUSTER(cluster_name)] [COMMINFO(comminfo_name)]
[CUSTOM(string)]
[DEFPRESP(ASPARENT | SYNC | ASYNC)]
[DEFPRTY(ASPARENT | integer)]
[DEFPSIST(ASPARENT | NO | YES)] [DESCR(st ring)]
[DURSUB(ASPARENT | YES | NO)]
[MCAST(ASPARENT | ENABLED | DISABLED | ONLY)]
[MDURMDL(q_name)] [MNDURMDL(q_name)]
[NPMSGDLV(ASPARENT | ALL | ALLDUR | ALLAVAIL)]
[PMSGDLV(ASPARENT | ALL | ALLDUR | ALLAVAIL)]
[PROXYSUB(FIRSTUSE | FORCE)]
[PUB(ASPARENT | ENABLED | DISABLED)]
[PUBSCOPE(ALL | ASPARENT | QMGR)]
[SUB(ASPARENT | ENABLED | DISABLED)]
[SUBSCOPE(ALL | ASPARENT | QMGR)]
[TYPE(LOCAL)] [USEDLQ(A SPARENT | NO | YES)]
[WILDCARD(BLOCK | PASSTHRU)]

32

FRUITOBJ
PUB(ASPARENT)
DEFPSIST(YES)

…

Topic object attributes

Fruit

Oranges

SYSTEM.BASE.TOPIC
PUB(ENABLED)
DEFPSIST(NO)

…

Price

• Many attributes can be set on topic objects to effect a
publisher or subscriber’s behaviour.

• Dynamic nodes inherit their behaviour from nodes
above.

�Create a topic object for topic string ‘/Price/Fruit’

�DEFINE TOPIC(FRUITOBJ) TOPICSTR(‘/Price/Fruit’) DEF PSIST(YES)

�Attributes default to inherit settings from above (e.g. ‘ASPARENT’).

�(So by default, a new object does nothing)

�Publish a message to topic string ‘/Price/Fruit/Oranges’

�Are publications enabled?

�What message persistence to use?

PUB = ?

PUB = ENABLED

PUB = ?

DEFPSIST = ?

DEFPSIST = YES

Publisher

PUB = ?

YES

ENABLED

33

SYSTEM.BASE.TOPIC

FRUITOBJ

Topic Security

• Access control is set as for queues, but for a
defined topic object , not a topic string!

• Authority checks performed on the topic tree
• Walk up the tree, just like attributes.
• Keep checking until an authorisation is found or we

run out of topic tree.

Apples

Bob

Price

VEGOBJ

Jane
Vegetables

Subscription
/Price/Fruit/Apples

Bob

Jane?

Jane?

Jane

Subscription
/Price/Fruit/Apples

Fruit
Bob?

DEFINE TOPIC(FRUITOBJ)
TOPICSTR(‘/Price/Fruit’)

setmqaut -m QMGR1 -t topic -n FRUITOBJ -
p BOB +sub

• Subscriber needs +sub authority on topic and
+put on the associated queue

• Publisher needs +pub on the topic and +put on
the associated queue

• Getter needs +get on the associated queue

Use cases (& break)

Use cases IBM products

• IBM Managed File Transfer (MFT, ex-FTE)
• Distribution of file transfer progress & log messages to “monitors”. The

coordination queue manager publishes all progress and log messages.
Any authorized user ids can request this information by subscribing.

• Publications done, for example, to topic:
SYSTEM.FTE/Log/agent_name/transfer_ID

• IBM Integration Bus (IIB, ex-WebSphere Message Broker)
• The Broker motor publishes statistics on the flow usage. Any authorized

user ids can request statistics by subscripting.
• Publications done, for example, to topic:
$SYS/Broker/integrationNodeName/StatisticsAccounting/
recordType/integrationServerName/messageFlowName

36

Managing topics

38

Managing topics
• Displaying topic object definitions

• This shows how administered topic objects are configured
5724-H72 (C) Copyright IBM Corp. 1994, 2014.

Starting MQSC for queue manager QMGR1. DISPLAY

DISPLAY TOPIC(*)
1 : DISPLAY TOPIC(*)

AMQ8633: Display topic details.

TOPIC(FRUITOBJ) TYPE(LOCAL)

AMQ8633: Display topic details.

TOPIC(SYSTEM.BASE.TOPIC) TYPE(LOCAL)

AMQ8633: Display topic details.

TOPIC(SYSTEM.BROKER.ADMIN.STREAM) TYPE(LOCAL)

AMQ8633: Display topic details.

TOPIC(SYSTEM.BROKER.DEFAULT.STREAM) TYPE(LOCAL)

AMQ8633: Display topic details.

TOPIC(SYSTEM.BROKER.DEFAULT.SUBPOINT) TYPE(LOCAL)

AMQ8633: Display topic details.

TOPIC(SYSTEM.DEFAULT.TOPIC) TYPE(LOCAL)

AMQ8633: Display topic details.

TOPIC(VEGOBJ) TYPE(LOCAL)

DISPLAY TOPIC(FRUITOBJ)
2 : DISPLAY TOPIC(FRUITOBJ)

AMQ8633: Display topic details.

TOPIC(FRUITOBJ) TYPE(LOCAL)

TOPICSTR(/Price/Fruit) DESCR(Price of fruit)

CLUSTER() CLROUTE(DIRECT)

DURSUB(ASPARENT) PUB(ASPARENT)

SUB(ASPARENT) DEFPSIST(YES)

DEFPRTY(ASPARENT) DEFPRESP(ASPARENT)

ALTDATE(2015-02-03) ALTTIME(08.44.48)

PMSGDLV(ASPARENT) NPMSGDLV(ASPARENT)

PUBSCOPE(ASPARENT) SUBSCOPE(ASPARENT)

PROXYSUB(FIRSTUSE) WILDCARD(PASSTHRU)

MDURMDL() MNDURMDL()

MCAST(ASPARENT) COMMINFO()

USEDLQ(ASPARENT) CUSTOM()

DISPLAY TOPIC(FRUITOBJ)
2 : DISPLAY TOPIC(FRUITOBJ)

AMQ8633: Display topic details.

TOPIC(FRUITOBJ) TYPE(LOCAL)

TOPICSTR(/Price/Fruit) DESCR(Price of fruit)

CLUSTER() CLROUTE(DIRECT)

DURSUB(ASPARENT) PUB(ASPARENT)

SUB(ASPARENT) DEFPSIST(YES)

DEFPRTY(ASPARENT) DEFPRESP(ASPARENT)

ALTDATE(2015-02-03) ALTTIME(08.44.48)

PMSGDLV(ASPARENT) NPMSGDLV(ASPARENT)

PUBSCOPE(ASPARENT) SUBSCOPE(ASPARENT)

PROXYSUB(FIRSTUSE) WILDCARD(PASSTHRU)

MDURMDL() MNDURMDL()

MCAST(ASPARENT) COMMINFO()

USEDLQ(ASPARENT) CUSTOM()

40

Managing topics
• Displaying the topic tree

• This shows how the topic nodes in the topic tree behave
5724-H72 (C) Copyright IBM Corp. 1994, 2014.

Starting MQSC for queue manager QMGR1. DISPLAY

DISPLAY PUBSUB ALL
1 : display PUBSUB all

AMQ8723: Display pub/sub status details.

QMNAME(QMGR1) TYPE(LOCAL)

STATUS(ACTIVE) SUBCOUNT(5)

TPCOUNT(11)

DISPLAY TPSTATUS(‘#’) TOPICSTR WHERE(SUBCOUNT GT 0)
22 : DISPLAY TPSTATUS('#') TOPICSTR where(SUBCOUNT GT 0)

AMQ8754: Display topic status details.

TOPICSTR(/Price/Vegetables/Potatoes) SUBCOUNT(1)

AMQ8754: Display topic status details.

TOPICSTR(/Price/Fruit/Oranges) SUBCOUNT(2)

AMQ8754: Display topic status details.

TOPICSTR(/Price/Fruit/Apples) SUBCOUNT(1)

DISPLAY TPSTATUS('/Price/Fruit/Apples')
23 : DISPLAY TPSTATUS('/Price/Fruit/Apples')

AMQ8754: Display topic status details.

TOPICSTR(/Price/Fruit/Apples) ADMIN()

CLUSTER()

COMMINFO(SYSTEM.DEFAULT.COMMINFO.MULTICAST)

MDURMDL(SYSTEM.DURABLE.MODEL.QUEUE)

MNDURMDL(SYSTEM.NDURABLE.MODEL.QUEUE)

CLROUTE(NONE) DEFPSIST(YES)

DEFPRTY(0) DEFPRESP(SYNC)

DURSUB(YES) PUB(ENABLED)

SUB(ENABLED) PMSGDLV(ALLDUR)

NPMSGDLV(ALLAVAIL) RETAINED(NO)

MCAST(DISABLED) PUBCOUNT(0)

SUBCOUNT(1) PUBSCOPE(ALL)

SUBSCOPE(ALL) USEDLQ(YES)

V8

DISPLAY TPSTATUS('/Price/Fruit/Apples')
23 : DISPLAY TPSTATUS('/Price/Fruit/Apples')

AMQ8754: Display topic status details.

TOPICSTR(/Price/Fruit/Apples) ADMIN()

CLUSTER()

COMMINFO(SYSTEM.DEFAULT.COMMINFO.MULTICAST)

MDURMDL(SYSTEM.DURABLE.MODEL.QUEUE)

MNDURMDL(SYSTEM.NDURABLE.MODEL.QUEUE)

CLROUTE(NONE) DEFPSIST(YES)

DEFPRTY(0) DEFPRESP(SYNC)

DURSUB(YES) PUB(ENABLED)

SUB(ENABLED) PMSGDLV(ALLDUR)

NPMSGDLV(ALLAVAIL) RETAINED(NO)

MCAST(DISABLED) PUBCOUNT(0)

SUBCOUNT(1) PUBSCOPE(ALL)

SUBSCOPE(ALL) USEDLQ(YES)

42

Applications and topics

• When creating subscriptions or opening topics to publish on, do I use a topic
string or a topic object?

• A topic string, a topic object or both .

• So which should I use?

• Using the topic string is probably the easiest, it’s closest to what the application
writer is expecting

– Sub(- , ‘/Price/Fruit/Apples’)→

• Using a topic object maps the operation to the topic string of that topic object
– Sub(FRUITOBJ , ‘’)→

• If you use both, you get both!
– The topic string is appended to the topic string of the object

– Sub(FRUITOBJ, ‘Apples’)→

• If in doubt, check the topic tree for which nodes exist and are actually
being used

/Price/Fruit/Apples

/Price/Fruit

/Price/Fruit /Apples

Subscriptions

44

Subscription types

• There are many different types of subscriptions:
• Administered or application created
• Durable or non-durable
• Managed or unmanaged subscription queues

• These different aspects of a subscription can be combined, don’t
assume it’s one or the other…

45

Subscription types

Subscription creation and deletion

• Application created subscriptions
• Applications use an API to dynamically create and delete subscriptions

• Administratively created subscriptions
• An administrator defines subscriptions that can be accessed by applications
• Applications can either use the publish/subscribe APIs to access these subscriptions or

access their associated queue using point-to-point APIs.

Admin

Application

47

Subscription types

Subscription lifetime

• Durable subscriptions
• The lifetime of the subscription is independent of any application

• Non-durable subscriptions
• The lifetime of the subscription is bounded by the creating application

– Subscriptions are automatically deleted when the application closes

Admin

Application

Durable Non-durable

Admin

Application

49

Subscription types

Subscription queue management

• A subscription maps a topic to a queue. The queue r elationship is either
explicit or implicit…

• Managed subscription queue (implicit)
• The subscription automatically creates and deletes a queue for the use of queuing any

matching publications.

• Unmanaged subscription queue (explicit)
• When the subscription is created the name and location of an existing queue must be

provided by you.

Durable Non-durable

Admin

Application

Managed Unmanaged

Durable Non-durable Durable Non-durable

Admin

Application
(Not JMS) (Not JMS)

Subscription

51

Accessing a subscription’s messages

Via the subscription
• An application opens the subscription

• A ‘true’ pub/sub application
• Works with managed and unmanaged subscription queue s
• Limited to one attached consuming application at a time

• Unless you’re using JMS cloned/shared subscriptions
• Generally better publish/subscribe status feedback

Via the queue
• An application opens the queue associated with the subscription

• This is really a point-to-point application
• Only works with unmanaged subscription queues
• Allows more freedom in what can be done

• For example, multiple concurrent consuming applications
are possible or multiple subscriptions using a single queue.

Subscription

Managed queue

Unmanaged queue

Consuming
application

Consuming
application

Consuming
application

SubscriptionSubscription

Consuming
application

54

Managing subscriptions
• Displaying subscriptions

• This shows the subscriptions on a queue manager
5724-H72 (C) Copyright IBM Corp. 1994, 2014.

Starting MQSC for queue manager QMGR1. DISPLAY

DISPLAY SUB(*) TOPICSTR
1 : DISPLAY SUB(*) TOPICSTR

AMQ8096: WebSphere MQ subscription inquired.

SUBID(414D5120514D4752312020202020202007183D5320002306)

SUB(SUB1) TOPICSTR(/Price/Fruit/Apples)

AMQ8096: WebSphere MQ subscription inquired.

SUBID(414D5120514D4752312020202020202004183D5310000006)

SUB(SYSTEM.DEFAULT.SUB) TOPICSTR()

AMQ8096: WebSphere MQ subscription inquired.

SUBID(414D5120514D4752312020202020202007183D5320002312)

SUB(SUB3) TOPICSTR(/Price/Vegetables/Potatoes)

SUBID(414D5120514D4752312020202020202007183D532000230C)

SUB(SUB2) TOPICSTR(/Price/Fruit/Oranges)

DISPLAY SUB(SUB1)
2 : DISPLAY SUB(SUB1)

AMQ8096: WebSphere MQ subscription inquired.

SUBID(414D5120514D4752312020202020202007183D5320002306)

SUB(SUB1) TOPICSTR(/Price/Fruit/Apples)

TOPICOBJ()

DEST(SYSTEM.MANAGED.DURABLE.533D180705230020)

DESTQMGR(QMGR1) PUBAPPID()

SELECTOR() SELTYPE(NONE)

USERDATA()

PUBACCT(16010515000000DEA960DF651724E4B97C192FE803000000000B)

DESTCORL(414D5120514D4752312020202020202007183D5320002306)

DESTCLAS(MANAGED) DURABLE(YES)

EXPIRY(UNLIMITED) PSPROP(MSGPROP)

PUBPRTY(ASPUB) REQONLY(NO)

SUBSCOPE(ALL) SUBLEVEL(1)

SUBTYPE(ADMIN) VARUSER(ANY)

WSCHEMA(TOPIC) SUBUSER(xxxx)

CRDATE(2015-02-03) CRTIME(09:19:15)

ALTDATE(2015-02-03) ALTTIME(09:19:15)

DISPLAY SBSTATUS(SUB1)
3 : DISPLAY SBSTATUS(SUB1)

AMQ8099: WebSphere MQ subscription status inquired.

SUB(SUB1)

SUBID(414D5120514D4752312020202020202007183D5320002306)

SUBUSER(xxxx) RESMDATE(2015-02-03)

RESMTIME(09:19:15) LMSGDATE()

LMSGTIME()

ACTCONN(00)

DURABLE(YES) MCASTREL(,)

NUMMSGS(73) SUBTYPE(ADMIN)

TOPICSTR(/Price/Fruit/Apples)

DISPLAY QLOCAL(SYSTEM.MANAGED.DURABLE.533D180705230020)

Publishing

57

Publication, success or failure?

• Point-to-point is nice and simple:
• Did the message get onto the queue?
• Was it persistent and transacted?

ConsumerProducer

58

Publication, success or failure?

• Point-to-point is nice and simple:
• Did the message get onto the queue?
• Was it persistent and transacted?

• Publish/subscribe is not so clear cut…
• Persistence and transactions still ensures integrit y of successful

publications .
• But if one or more subscriptions can’t receive the publication, should the publish

fail?

Subscription
/Price/Fruit/Oranges

Publisher
/Price/Fruit/Oranges

Subscription
/Price/Fruit/Oranges

Subscription
/Price/Fruit/Oranges

Subscription
/Price/Fruit/Oranges

59

Publication, success or failure?

• Should those subscriptions impact the others, should the publisher know?
• What if the subscriptions are durable and the publication is persistent ?

• Controlled at the topic level
• Persistent Message Delivery (PMSGDLV) and Non-persistent Message Delivery

(NPMSGDLV).
– ALL – all messages must be delivered to all subscrib ers, or roll-back
– ALLDUR – all messages must be delivered to DURABLE s ubscribers, or roll-back
– ALLAVAIL – in the case of any failures to deliver, n o roll-back

• Don’t forget that being able to DLQ a publication is still counted as a success!
• USEDLQ on the topic to fine tune this behaviour.

• And finally, remember – when there are no subscriptions, no-one gets it. That’s still a
successful publish!

Subscription
/Price/Fruit/Oranges

Publisher
/Price/Fruit/Oranges

Subscription
/Price/Fruit/Oranges

Subscription
/Price/Fruit/Oranges

Subscription
/Price/Fruit/Oranges

V7.1

DLQ

61

Retained publications

Price

Fruit

Apples Oranges
Subscription

/Price/Fruit/Oranges

Publisher
/Price/Fruit/Oranges

Subscription
/Price/Fruit/Oranges

• When a message is published to a topic string, it is delivered to each
matching subscription registered at that time.

• Subscriptions created after that point will not receive the message
only newly published ones.

• Unless publications are retained

62

Retained publications

• When a message is published to a topic string, it is delivered to each
matching subscription registered at that time.

• Subscriptions created after that point will not receive the message
only newly published ones.

• Unless publications are retained
• Every time a message is published, the most recent

publication for each topic string is retained by the
queue manager.

• When a new subscription is created, any
matching retained message is
delivered to it.

• Take care, using
retained can be subtle

• Don’t confuse it with persistent publications

Price

Fruit

Apples Oranges
Subscription

/Price/Fruit/Oranges

Publisher
/Price/Fruit/Oranges

Subscription
/Price/Fruit/Oranges

Application
development

Pub/Sub application development

• Support for all languages which use MQ (of course!)
• JMS provides standard objects (eg. Topic, Publisher, Subscriber) for

Pub/Sub
• MQI added similar support (eg. Verbs, objects) beginning with MQ

v7.0

Publish/Subscribe using MQI - Summary

• The verbs used are:-
• MQOPEN
• MQPUT
• MQSUB*
• MQSUBRQ*
• MQCLOSE

• New structures to accompany new verbs
• MQSUB* – MQSD – Subscription Descriptor
• MQSUBRQ* – MQSRO – Subscription Request Options

* New with MQv7

68

Subscribing application

• MQSUB verb
• Similar to an MQOPEN

• Subscription Descriptor (MQSD) describes
the topic

• MQSD.ObjectString
• MQSD.ObjectName

• hObj is a pre-existing (and OPEN) queue
for a non-Managed subscription, or…

� hObj is a returned handle for a queue if
Managed (MQSO_MANAGED used)

• MQGET to later consume publications from
the hObj

New structure for subscription

• MQSD – subscription description
• StrucId – structure identifier
• Version – structure version number
• Options – options
• ObjectName – object name
• AlternateUserId – alternate user id
• AlternateSecurityId – alternate security id
• SubExpiry – subscription expiry
• ObjectString – object string
• SubName – subscription name
• SubUserData – subscription user data
• SubCorrelId – subscription correlation id
• PubPriority – publication priority
• PubAccountingToken – publication accounting token
• PubAppIdentityData – publication application identity data
• SubLevel – subscription level
• ResObjString –

Non-durable managed subscription application

Subscribing App

Lo
ca

l Q
M

gr

� Connect to a queue
manager

MQCONN(MyQmgr,Hconn,CC,RC)

Set up MQSD

MQSUB(Hconn,SD,Hobj,Hsub,
CC,RC)

� Subscribe to a topic

MQGET(Hconn,Hobj,MD,GMO,
BuffLen,Buffer,
DataLength,CC,RC)

� Get publications published
to that topic

MQCLOSE(Hconn,Hsub,
CloseSubOpts,CC,RC)

MQCLOSE(Hconn,Hobj,CloseOpts,
CC,RC)

� Close subscription to
unsubscribe

� Close queue

Set up Close Options

71

Publishing application

• MQOPEN a topic

• MQOD describes a topic to publish to:
• ObjectType

–MQOT_Q for point-to-point
–MQOT_TOPIC for publish

• ObjectString/ObjectName
–Where to publish

• MQPUT a message

Topologies

76

Distributed publish/subscribe
• We know how everything revolves around the

topic tree, dynamically built up in a queue manager

QMgr

Topics

Subscription
Publisher

Subscription

Subscription

Subscription

77

QMgr

Topics

Subscription

Subscription

QMgrQMgr

Topics

Subscription

SubscriptionQMgrQMgr

Topics

Publisher

QMgrQMgr

Topics

Subscription
Publisher

Subscription

Subscription

Distributed publish/subscribe
• We know how everything revolves around the

topic tree, dynamically built up in a queue manager
• Queue managers can work together to share their

topic tree knowledge between them

78

QMgrQMgr

Topics

Publisher

QMgrQMgr

Topics

Subscription

QMgrQMgr

Topics

Subscription

Subscription

Distributed publish/subscribe
• We know how everything revolves around the

topic tree, dynamically built up in a queue manager
• Queue managers can work together to share their

topic tree knowledge between them
• Enabling publications to be propagated to

subscriptions on different queue managers

• The applications stay the same, the changes
are at the configuration level.

Subscription

79

Distributed publish/subscribe topologies

• Publish/subscribe topologies can either be created as a defined
hierarchy or more dynamically as a cluster

Subscription

Publisher

Subscription

Subscription

Publisher

Subscription

Subscription

Subscription

80

Distributed publish/subscribe topologies

• A hierarchy manually defines the relationship between each queue manager.
• Messages are flowed via those relationships.

Subscription

Publisher

Subscription

Subscription

Publisher

Subscription

Subscription

Subscription

81

Distributed publish/subscribe topologies

Subscription

Publisher

Subscription

Subscription

• A hierarchy manually defines the relationship between each queue manager.
• Messages are flowed via those relationships.

83

Distributed publish/subscribe topologies
• A cluster can be used for publish/subscribe through simple configuration.
• Any queue manager can publish and subscribe to topics
• Published messages can go direct between queue managers

Publisher

Subscription

Subscription

Subscription

Publisher

Subscription

Subscription

Subscription

• Or be routed via specific queue
managersV8

85

Summary

• Publish/Subscribe in IBM MQ

• Administration of publish/subscribe

• Management of publish/subscribe

• Subscriptions and publications

• Topologies

86

The Workshop Environment - LPAR Map

MPX1 (ZT01)
z/OS

Actual IP
10.3.20.1

CF

QML1 QML3

1417

TEAM01
VMware

Windows
TEAM01_QMGR

TEAM05
VMware

Windows
TEAM05_QMGR

TEAM03
VMware

Windows
TEAM03_QMGR

TEAM07
VMware

Windows
TEAM07_QMGR

1418

MPX2 (ZT02)
z/OS

Actual IP
10.3.20.2

QML2 QML4

1417

TEAM02
VMware

Windows
TEAM02_QMGR

TEAM06
VMware

Windows
TEAM06_QMGR

TEAM04
VMware

Windows
TEAM04_QMGR

TEAM08
VMware

Windows
TEAM08_QMGR

1418

The “cloud”

87

Rules of engagement
� Each lab includes detailed instructions.

� You’re strongly advised to follow the instructions exactly.

� There are 8 “teams” (TSO userids): TEAM01, TEAM02….
–Password: PUB09SUB

� Given the nature of the POT, and the limited time for each exercise, it’s
probably not a good idea to deviate, especially in the beginning.

� If you’re not sure if a step worked correctly, ask the instructor. Better to ask too
much, than not enough.

� These LPARs are only “sandbox” systems.
–You are given enough privilege on these z/OS systems to do the exercises, see results, etc.
–Please try to resist all temptation to modify the queue manager settings, change the z/OS userid
“settings”, eg. PF keys, etc. from the default values. Other classes/students use these ids!

Team Primary QM LPAR

TEAM01, TEAM05 QML1 MPX1 (ZT01)

TEAM02, TEAM06 QML2 MPX2 (ZT02)

TEAM03, TEAM07 QML3 MPX1 (ZT01)

TEAM04, TEAM08 QML4 MPX2 (ZT02)

Warning: you may see the following in your VMware…..

Don’t worry….. be happy….. This IS a genuine Windows, but running on a
Cloud environment and I just don’t bother re-activa ting each time it’s

deployed. Please do NOT go to the activation menus … just ignore this.

88

Backup

89

Bibliography

• IBM MQ Knowledge Center
(http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.pro.doc/q001010_.htm?cp=SSFKSJ_8.0.0%2F1&lang=en)

• SC34-6950 MQv7 Publish/Subscribe User's Guide
• WSG24-7583 WebSphere MQ V7.0 Features and Enhancements

90

